STRUCTURAL PROJECTIONS ON A JBW-TRIPLE AND GL-PROJECTIONS ON ITS PREDUAL

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on lifting projections

Suppose $pi:mathcal{A}rightarrow mathcal{B}$ is a surjective unital $ast$-homomorphism between C*-algebras $mathcal{A}$ and $mathcal{B}$, and $0leq aleq1$ with $ain  mathcal{A}$. We give a sufficient condition that ensures there is a proection $pin mathcal{A}$ such that $pi left( pright) =pi left( aright) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real...

متن کامل

a note on lifting projections

suppose $pi:mathcal{a}rightarrow mathcal{b}$ is a surjective unital $ast$-homomorphism between c*-algebras $mathcal{a}$ and $mathcal{b}$, and $0leq aleq1$ with $ain  mathcal{a}$. we give a sufficient condition that ensures there is a proection $pin mathcal{a}$ such that $pi left( pright) =pi left( aright) $. an easy consequence is a result of [l. g. brown and g. k. pedersen, c*-algebras of real...

متن کامل

Some notes on L-projections on Fourier-Stieltjes algebras

In this paper, we investigate the relation between L-projections and conditional expectations on subalgebras of the Fourier Stieltjes algebra B(G), and we will show that compactness of G plays an important role in this relation.

متن کامل

ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS

Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2004

ISSN: 0304-9914

DOI: 10.4134/jkms.2004.41.1.107